Ela Classes of Non-hermitian Operators with Real Eigenvalues
نویسندگان
چکیده
Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is Q-Hermitian, allowing for the standard probabilistic interpretation of quantum mechanics. Finally, it is shown that the considered matrices are similar to Hermitian matrices.
منابع مشابه
Classes of non-Hermitian operators with real eigenvalues
Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is...
متن کاملEla Hermitian Octonion Matrices and Numerical Ranges
Notions of numerical ranges and joint numerical ranges of octonion matrices are introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex cones, such as the convex cone of positive semidefinite matrices, are described. As an application, convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application involves existence of...
متن کاملPseudo-Hermitian ensemble of random Gaussian matrices.
It is shown how pseudo-Hermiticity, a necessary condition satisfied by operators of PT symmetric systems can be introduced in the three Gaussian classes of random matrix theory. The model describes transitions from real eigenvalues to a situation in which, apart from a residual number, the eigenvalues are complex conjugate.
متن کاملEla Eigenvalues of Sums of Pseudo-hermitian Matrices
We study analogues of classical inequalities for the eigenvalues of sums of Hermitian matrices for the cone of admissible elements in the pseudo-Hermitian case. In particular, we obtain analogues of the Lidskii-Wielandt inequalities.
متن کاملAnalyzing the spectrum of general, non-hermitian Dirac operators
We discuss the computational problems when analyzing general, non-hermitian matrices and in particular the un-modified Wilson lattice Dirac operator. We report on our experiences with the Implicitly Restarted Arnoldi Method. The eigenstates of the Wilson-Dirac operator which have real eigenvalues and correspond to zero modes in the continuum are analyzed by correlating the size of the eigenvalu...
متن کامل